Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: covidwho-20233099

ABSTRACT

Proteolytic processing is the most ubiquitous post-translational modification and regulator of protein function. To identify protease substrates, and hence the function of proteases, terminomics workflows have been developed to enrich and detect proteolytically generated protein termini from mass spectrometry data. The mining of shotgun proteomics datasets for such 'neo'-termini, to increase the understanding of proteolytic processing, is an underutilized opportunity. However, to date, this approach has been hindered by the lack of software with sufficient speed to make searching for the relatively low numbers of protease-generated semi-tryptic peptides present in non-enriched samples viable. We reanalyzed published shotgun proteomics datasets for evidence of proteolytic processing in COVID-19 using the recently upgraded MSFragger/FragPipe software, which searches data with a speed that is an order of magnitude greater than many equivalent tools. The number of protein termini identified was higher than expected and constituted around half the number of termini detected by two different N-terminomics methods. We identified neo-N- and C-termini generated during SARS-CoV-2 infection that were indicative of proteolysis and were mediated by both viral and host proteases-a number of which had been recently validated by in vitro assays. Thus, re-analyzing existing shotgun proteomics data is a valuable adjunct for terminomics research that can be readily tapped (for example, in the next pandemic where data would be scarce) to increase the understanding of protease function and virus-host interactions, or other diverse biological processes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Proteolysis , SARS-CoV-2/metabolism , Proteomics/methods , Protein Processing, Post-Translational , Proteins/chemistry , Peptide Hydrolases/metabolism , Endopeptidases/metabolism
2.
ACS Infect Dis ; 9(4): 749-761, 2023 04 14.
Article in English | MEDLINE | ID: covidwho-2269960

ABSTRACT

The recent emergence of SARS-CoV-2 in the human population has caused a global pandemic. The virus encodes two proteases, Mpro and PLpro, that are thought to play key roles in the suppression of host protein synthesis and immune response evasion during infection. To identify the specific host cell substrates of these proteases, active recombinant SARS-CoV-2 Mpro and PLpro were added to A549 and Jurkat human cell lysates, and subtiligase-mediated N-terminomics was used to capture and enrich protease substrate fragments. The precise location of each cleavage site was identified using mass spectrometry. Here, we report the identification of over 200 human host proteins that are potential substrates for SARS-CoV-2 Mpro and PLpro and provide a global mapping of proteolysis for these two viral proteases in vitro. Modulating proteolysis of these substrates will increase our understanding of SARS-CoV-2 pathobiology and COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Synthases , Peptide Hydrolases/metabolism
3.
Proteomics ; 21(2): e2000246, 2021 01.
Article in English | MEDLINE | ID: covidwho-1384281

ABSTRACT

The genome of coronaviruses, including SARS-CoV-2, encodes for two proteases, a papain like (PLpro ) protease and the so-called main protease (Mpro ), a chymotrypsin-like cysteine protease, also named 3CLpro or non-structural protein 5 (nsp5). Mpro is activated by autoproteolysis and is the main protease responsible for cutting the viral polyprotein into functional units. Aside from this, it is described that Mpro proteases are also capable of processing host proteins, including those involved in the host innate immune response. To identify substrates of the three main proteases from SARS-CoV, SARS-CoV-2, and hCoV-NL63 coronviruses, an LC-MS based N-terminomics in vitro analysis is performed using recombinantly expressed proteases and lung epithelial and endothelial cell lysates as substrate pools. For SARS-CoV-2 Mpro , 445 cleavage events from more than 300 proteins are identified, while 151 and 331 Mpro derived cleavage events are identified for SARS-CoV and hCoV-NL63, respectively. These data enable to better understand the cleavage site specificity of the viral proteases and will help to identify novel substrates in vivo. All data are available via ProteomeXchange with identifier PXD021406.


Subject(s)
COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus NL63, Human/enzymology , Peptide Fragments/analysis , SARS-CoV-2/enzymology , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Proteins/metabolism , COVID-19/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Eukaryotic Initiation Factor-4G/metabolism , Host-Pathogen Interactions , Humans , Lung/metabolism , Lung/virology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL